2025-02-06 查看详情
在现代工业建筑领域,铝型材因其独特的性能与优点,逐渐成为建筑设计师和工程师的首选材料。本文将深入探讨铝型材在工业建筑中的应用,分析其优势与特性,并展望未来趋势。我们希望通过这篇文章,能为您提供全面而详细的信息,帮助您更好地理解这个重要的建筑材料。 一、铝型材的基本概念 铝型材是通过铝合金经过挤压等工艺制成的型材,通常具备一定的截面形状,功能多样,广泛应用于建筑、交通运输、电子、机械等领域。铝型材不仅轻质高强,而且耐腐蚀、导热性良好,是现代建筑中不可或缺的材料。 二、铝型材的特性与优势 1. 轻质高强 铝型材的密度仅为钢材的三分之一,极大提高了建筑结构的承载能力和灵活性,这对于一些需要大跨度和轻便设计的工业建筑尤为重要。同时,铝合金材料的强度与韧性得到进一步的提升,使得铝型材可在高负载情况下依然保持稳定性。 2. 耐腐蚀性 铝在自然条件下会形成一层致密的氧化铝膜,使其表面具备优良的耐腐蚀性能。相比其他金属材料,铝型材在恶劣环境中表现出色,能有效抵御气候变化、化学物质的侵蚀,从而延长建筑寿命,降低维护成本。 3. 节能环保 铝型材的生产过程相对环保,且铝材本身可回收利用,符合可持续发展的原则。在建筑中使用铝型材,不仅能有效降低能源消耗,还能减少建设对环境的不良影响。 4. 设计灵活性 铝型材可以根据不同的需求定制多种形状和尺寸,设计师可以根据具体的建筑需求进行创意设计。无论是大面积的建筑外墙,还是细致入微的门窗设计,铝型材都能提供出色的解决方案,打造现代工业建筑独特的视觉效果。 三、铝型材在工业建筑中的应用实例 1. 工业厂房 在工业厂房的建设中,铝型材常被用作框架结构与外墙包覆材料。其轻质与高强的特点让建筑结构可以设计得更加简洁,同时也能有效降低施工的时间和人为成本。 2. 物流中心 随着电商行业的发展,物流中心的需求愈发旺盛。铝型材凭借其耐腐蚀和抗锈蚀特性,为物流中心提供了持久耐用的建筑解决方案,能够在极端天气条件下维持稳定性。 3. 仓储设施 现代仓储设施需要高效的空间利用和便捷的物流管理。铝型材具备良好的结构性能和可塑性,可以实现多样化的内部布局设计,极大提高仓储的使用效率。 四、铝型材的施工与维护 在施工过程中,铝型材的组装相对简单,高效能降低工期。同时,由于铝材表面处理技术的进步,铝型材的维护与清洁变得尤为简单,定期的清洗和检查即可保持其良好的外观和性能。 五、铝型材的未来发展趋势 1. 新技术推动铝型材创新 随着科技的进步,铝型材生产工艺不断更新,新的铝合金材料层出不穷,如高强度铝合金、热传导铝型材、绿色环保铝型材等,提高了铝型材在各领域的适用性。 2. 智能化建筑的助力 智能化建筑的普及为铝型材的应用提供了新思路,将智能监测系统与铝型材结构结合,使得建筑在运行过程中更加安全高效。同时,铝型材的轻质特性也为智能建筑的各种高科技设备的安装提供了便利。 3. 市场需求推动铝型材发展 随着市场对绿色建筑的需求增加,铝型材因其环保特性在未来建筑市场中将占据更重要的位置。各大建筑企业也在不断探索铝型材在节能、环保方面的应用,迎合社会的发展趋势。 六、结语 铝型材因其独特的优势和广泛的应用,已经成为现代工业建筑的理想选择。通过了解铝型材的特性与优势,我们可以更好地利用这一优质建材来满足日益增长的建筑需求。在未来,随着技术的不断发展和市场需求的变化,铝型材将在工业建筑领域展现出更加广阔的前景。
摘要:国标GB/T5237.2-2000规定的滴碱试验的性能指标与日本工业标准JIS H 8601规定的耐碱性的性能指标一致,但二者在试验方法上还是有些差异,国标GB/T5237.2认可目视观察法和仪器测量法为滴碱试验方法,而日本工业 标准JIS H 8601中耐碱性试验方法只规定了仪器测量法。针对国标对滴碱试验方法描述不够具体的原因,本文对滴碱试验的方法原理进行了描述,并对目视观察法的注意事 项及主要影响因素进行了描述,同时还介绍了日本工业标准JIS H 8681-1规定的仪器测量法。通过对两种方法的对比,认为仪器测量法更具优势,减少了人为因素的影响。 关键词:阳极氧化膜、滴碱试验、性能、方法 随着建筑铝合金型材表面处理工艺技术的不断完善和提高,对于产品质量的要求也应相应的提高,为此,新颁布的2000版国家标准GB/T 5237.1-5237.5《铝合金建筑型材》在1993版GB/T5237的基础上进行了大篇幅的修改,将原冶标YS/T 100-1997《电泳涂漆铝合金建筑型材》和YS/T 407-1997《粉末静电喷涂铝合金建筑型材》共同统一到标准中来,同时增加了氟碳漆喷涂型材的内容。在修订过程中,大量参考采用了国外先进的标准,其 中GB/T 5237.2-2000《铝合金建筑型材 第2部分 阳极氧化、着色型材》中滴碱试验的性能指标就与日本工业标准JIS H8601《铝及铝合金阳极氧化膜》中所规定耐碱性的性能指标相一致。但二者在试验方法上还是有些差异,我国标准GB/T 5237.2中规定的滴碱试验方法为目视观察法或仪器测量法,而日本工业标准JIS H 8601中的耐碱性试验方法仅规定了仪器测量法【注:日本工业标准JIS H 8601中耐碱性试验方法规定了两种仪器测量法,一种是电压试验法(alkali resistance test by electromotive force);另一种则是碱点滴试验法(alkali spot test),即国内一些检验人员所采用滴碱试验方法中的仪器测量法。】。 1 试验原理探讨 我国铝合金建筑型材国家标准和日本工业标准对滴碱试验的方法原理都未进行描述,而为了更好的掌握滴碱试验的操作方法,了解滴碱试验的方法原理是有必要的。 滴碱试验主要用于考察阳极氧化膜的耐碱腐蚀性能。对于阳极氧化膜来说,其耐碱腐蚀性能相对比较差,当一定浓度的氢氧化钠溶液滴在阳极氧化膜表面之后,将很 快对阳极氧化膜进行侵蚀,如果封孔不良或氧化膜疏松等原因而导致阳极氧化膜耐碱腐蚀性差时,其侵蚀速度将会更快,因此通过计算阳极氧化膜被穿透时间可用于 评价阳极氧化膜的耐碱腐蚀性能。但由于氢氧化钠溶液对氧化膜的侵蚀速度快,给氧化膜耐碱腐蚀性能的评价带来一定的难度。目前,滴碱试验主要存在着两种试验 方法,一种是目视观察法,一种是仪器测量法。目视观察法是基于当氢氧化钠溶液滴在氧化膜表面之后,氧化膜将会慢慢溶解,其化学反应方程式如下: Al2O3·χH2O+2NaOH=2NaAlO2+(χ+1)H2O 氧化膜在溶解过程中,氢氧化钠溶液不断向氧化膜内部侵蚀,当氢氧化钠溶液侵蚀到基体金属表面之后,金属铝与氢氧化钠溶液发生置换反应,在反应过程中将会有氢气析出而产生腐蚀冒泡。其化学反应方程式如下: 2Al+2NaOH+2H2O=2NaAlO2+3H2 而仪器测量法是基于阳极氧化膜的电绝缘性而提出的,铝基体是电的良导体,铝阳极氧化膜则是高电阻的绝缘膜,其绝缘性与氧化膜的厚度有关,在氧化膜被氢氧化 钠溶液溶解过程中,随着氧化膜厚度的降低其电阻也将会慢慢降低,当电阻降低到一定数值的时候可认为导电,即认为氧化膜被溶解。 2 目视观察法的注意事项及主要影响因素探讨 对于滴碱试验考虑的关键是,试验温度的控制以及如何准确地判断氧化膜刚好被穿透的时间。我国GB/T 5237.2-2000中对滴碱试验方法规定为:“在35℃±1℃下,将大约10mg、100g/LNaOH溶液滴至型材试样的表面,目视观察液滴处直至 产生腐蚀冒泡,计算其氧化膜被穿透的时间。也可用仪器测量氧化膜穿透的时间。”也就是说,国标认可了两种滴碱试验方法,即目视观察法和仪器测量法。对于目 试验观察法,国标描述的比较简单,试验操作中的一些注意事项及其影响因素未作描述。而为了保证测试结果的准确性,在操作过程中对于影响因素应加以注意,以 便尽可能减少或避免这些因素的影响,本方法应注意的事项主要有以下几点:(1)试样的控制,试样受检面必须保持完整,不允许有擦花或划伤等破坏,而且受检 面必须清洁,不允许有污渍、油污等脏物覆盖在受检面上,因此测试前一般要用不破坏氧化膜的有机溶剂轻轻擦拭试样表面;(2)试验溶液浓度的控制,氢氧化钠 溶液的浓度必须严格控制到100g/L,浓度偏低或偏高将直接导致测试结果偏大或偏小;(3)试验温度的控制,试验时不仅要保证试验环境温度控制在 35℃±1℃,而且试验溶液和试样也必须控制在35℃±1℃,为此在测试前应先将试液和试样放置于恒温仪器中保持一段时间,只有当试液和试样恒定在 35℃±1℃之后才可以进行测试;其四是恒温仪器的选用,恒温仪器的选用在本方法中是一个非常重要的环节,因为所选用的恒温仪器不仅应起到恒温的作用,还 必须考虑要便于观察仪器内试样的变化情况,如果所选用的恒温仪器没有一个能够清晰地观察仪器内试样变化情况的观察口,那么要想准确地判断出试样何时开始腐 蚀冒泡是不大可能的。另外,目视观察法还受试验人员经验的影响,在实际检验工作中发现,从阳极氧化膜开始溶解到氧化膜被穿透(试样开始腐蚀冒泡)这一过程 中并没有一个很明显的变化,给氧化膜穿透时间的判断带来很大难度,这就对试验人员提出了很高的要求,试验人员必须要有非常丰富的实践经验,能够准确地判断 出氧化膜何时被穿透而开始腐蚀冒泡。 3 仪器测量法的方法描述 对于仪器测量法在国标中并未描述其具体的操作方法,但日本工业标准JIS H 8601中规定按JIS H 8681-1:1999《铝及铝合金阳极氧化膜耐腐蚀性试验方法-第1部分:耐碱性试验》执行,在JIS H 8681-1中对仪器测量法进行了详细的描述。为了使国内从事质量检验工作的人员对仪器测量法有一个比较清楚的了解,本文就日本工业标准JIS H 8681-1所规定的碱点滴试验方法(仪器测量法)的操作要点进行介绍。本方法主要的试验仪器有:滴液仪器(能够在设定的时间间隔按设定的试液量连续地滴 落试液)、恒温仪器以及测电阻的仪器。其试验要求如下表所示: 项目 试验要求 试验空气温度 35℃±1℃ 试验溶液温度 35℃±1℃ 每个测试点的试验面积 大约28mm?(直径为6mm) 每个测试点的试液量 大约16mg 试液滴落的时间间隔 5s 氢氧化钠溶液的浓度 100g/L 在试验前应采用浸有适当溶剂(如丙酮、乙醇等对试样无腐蚀的溶剂)的柔软的布将试样表面的污渍清洗干净。接着用耐碱性墨水或其他墨水在试样表面画一些一定 间距并且内径大约为6mm的圆或将有一些直径为6mm的孔的合成树脂带粘在试样表面,并将试样放在温度为35℃±1℃的恒温仪器中至少保持30min,使 试样温度恒定为35℃±1℃。然后用滴液仪器将试液连续地滴落到试样上标记的圆内。当腐蚀冒泡点的数量增加到所有测试点的数量一半时,立即将试样投入漂洗 水中,在测试面上用棉球等轻轻地擦洗并晾干。记录从最初滴落的液滴或最后滴落的液滴到试样被投入水中的间隔时间。用可测电阻的仪器测量每个测试点的导电 性,要求每个点测量3次,当仪器的读数达到5000Ω或更低,则认为此测试点导电并且认为此测试点的氧化膜已被溶解。计算最后一个导电的测试点到试样被投 入水中的间隔时间,这一时间就可用于评价该试样耐碱腐蚀性能。然而,笔者认为仪器测量法的操作也并不一定要求一尘不变,基于本方法的试验原理,对操作步骤 进行适当的修改也还是可以的。例如国内有些检验人员将仪器自动滴加试液的操作改为手动滴加试液,这应该算是一个很好的变化,因为这一改变使仪器测量法的适 用范围更广,一般的实验室都可采用,而无需购买专门的试液滴加仪器。 4 结论 (1) 仪器测量法对氧化膜被穿透的判断是通过测量其导电性来反映的,与目视观察法相比较,其操作简单易行,减少了人为因素的影响,使结果的重现性更好。 (2)与目视观察法相比较,仪器测量法对检验人员经验的要求更少些,有利于新接触本试验的检验人员快速掌握。 参考文献 [1] GB/T 5237.2-2000[S],铝合金建筑型材 第2部分 阳极氧化、着色型材 [2] JIS H 8601:1999[S],Anodic oxide coatings on aluminium and aluminium alloys [3] 朱祖芳.铝合金阳极氧化与表面处理技术[M].北京:化学工业出版社,2004.299 [4] JIS H 8681-1:1999[S],Test methods for corrosion resistance of anodic oxide coatings on aluminium and aluminium alloys- Part 1:Alkali resistance test
2013-04-07铝合金建筑型材表面处理膜主要功能是装饰性和防护性,其中评价产品有无防护性能的一个常用性能指标就是耐盐雾腐蚀性,它也是铝合金建筑型材国家标准的一项 重要性能指标。在GB 5237.4-2004《铝合金建筑型材 第4部分:粉末喷涂型材》和GB 5237.5-2004《铝合金建筑型材 第5部分:氟碳漆喷涂型材》中对耐盐雾腐蚀性的评价规定了三种试验方法:即铜加速乙酸盐雾试验(CASS试验)方法、乙酸盐雾试验(AASS试验)方法和 中性盐雾试验(NSS试验)方法,这三种试验方法分别来自于日本轻金属制品协会规范《建筑用铝及铝合金着色涂膜》、欧盟Qualicoat和美国AAMA 2603标准中的要求。其中日本标准中规定的铜加速乙酸盐雾试验的试样不需要划交叉线,直接进行测试,而美国AAMA 2603、欧盟Qualicoat规定的中性盐雾试验和乙酸盐雾试验要求在试样表面划两条深至基体的交叉对角线,然后再进行测试。这三种盐雾试验方法是评 价铝合金建筑型材耐盐雾腐蚀性最常用的方法,但三者之间考查的对象还是有所区别。铜加速乙酸盐雾试验主要考查的是膜上腐蚀,其评价的主要是有机涂层的性 能。不过,试验证明当前处理效果不好或喷涂前经铬化处理(或磷-铬化处理等)的型材被再次污染时,则试验后也会出现起泡现象而造成产品不合格。中性盐雾试 验和乙酸盐雾试验考查的主要是膜下腐蚀,当然对膜上腐蚀也进行了考查,因此,其考查对象除了有机涂层之外,还对前处理的化学转化膜进行了考查。所以我们认 为GB 5237.4-2004和GB 5237.5-2004中规定的乙酸盐雾试验、中性盐雾试验考查的更全面些,而标准中规定的铜加速乙酸盐雾试验对有机涂层下的化学转化膜的耐盐雾腐蚀性未 进行评价,这将可能导致乙酸盐雾试验、中性盐雾试验与铜加速乙酸盐雾试验结果存在较大的差异。然而考虑到铜加速乙酸盐雾试验加速腐蚀性更快些,有利于企业 生产控制,也有利于政府职能部门对产品进行监督检验,如果能以最短的时间对产品质量作出评价,这将是生产企业最希望看到的结果,因此我们尝试着采用表面划 交叉对角线的试样进行铜加速乙酸盐雾试验,希望了解铜加速乙酸盐雾试验对铝合金建筑型材有机聚合物喷涂产品膜下腐蚀的情况,以便于给标准的修订起到参考作 用。 1 试验准备 1.1 试样的选取。试样包括粉末喷涂样品和氟碳漆喷涂样品,所有试样都是按正常的生产工艺,随同产品同时生产出来的,样品表面无划伤和擦花现象。所有试样受检面都采用刀具划两条交叉对角线,交叉对角线划破涂层深至金属基体,线段不贯穿对角。 1.2 盐雾箱的选用。本试验所选用的盐雾箱是英国C+W专业设备有限公司生产的,其型号为:SF/450/0。该仪器具有温度控制系统和流量控制系统,工作时盐液流经喷嘴,通过压缩空气使其雾化,然后沉降在试样表面。 2 试验操作 2.1试验溶液的配制 本试验所用试剂全部采用分析纯化学试剂。通过计算,将一定量的氯化钠溶于蒸馏水中,使其浓度为50g/L。接着再在此溶液中加入一定量的氯化铜 (CuCl2·2H2O), 使氯化铜(CuCl2·2H2O)的浓度为0.26g/L。在室温下用酸度计测量初配制时溶液的PH值,并采用冰乙酸来调节溶液的PH值,将其控制在 3.0~3.1之间,以保证从喷嘴中喷射出来的收集液的PH值在3.1~3.3范围内。 2.2 气压和盐液流量的调节 压缩空气的压力和盐液流量对于试验结果有很大的影响,因此,试验前要先调试好气压和盐液的流量。本试验在盐雾箱内放置了两个收集器,一个放置在靠近喷嘴的 部位,另一个放置在远离喷嘴的箱角。收集器成漏斗形状,直径为10cm,收集面积约为80cm2。漏斗管插入带有刻度的量筒内,以便于确定所收集到的盐液 量。气压和盐液流量调试操作程序是:先将压缩空气调节阀和流量调节阀调整到一定的数值,使仪器经过24h喷雾后,两个收集器收集的盐液量大致相等,并且每 个收集器收集的盐液量为(1~2)mL/h。记录此时压缩空气调节阀的气压和盐液流量调节阀的流量,作为测试样品时的气压控制和流量控制的数值。 2.3 试样的放置 本试验所用的盐雾箱配有试样架,样品放置于试样架的试样槽内,可保证试样受检面与垂直方向大约成20°的角度。试验时将试样置于试样架上,试样已划交叉线 的受检面朝上。试样与试样之间保持一定的距离,以保证不影响盐雾自由降落在每个受检面上,并且试样上的液滴不会落到其他试样的受检面上。 2.4 试验控制 试样放置好之后,对试验参数也进行了设置,其中将试验温度设置为50℃,试验时间参照GB5237.4和GB 5237.5中CASS试验的规定设置为120h。在盐雾箱工作期间每天都检查压缩空气的气压和盐液流量是否稳定,确保气压和流量控制在前面已调试并记录 的气压值和流量值。 本试验在盐雾箱运行48h后,曾经短暂停止试验,取出样品进行目视检查受检面的腐蚀情况,在检查过程中发现试样表面腐蚀很少,因此为了缩短试验停止时间, 当时未对样品进行仔细评价,而是立即将样品放回盐雾箱继续试验,直到盐雾箱运行120h之后结束试验。为了减少腐蚀产物的脱落,试样从盐雾箱内取出来之 后,放在试验室内自然干燥大约0.5h,然后用常温下的自来水清洗受检面,以除去试样表面残留的盐溶液,再自然晾干后进行检查。试验结果如表1、表2所 示。 表1氟碳漆喷涂样品120hCASS试验结果 样品编号 试验结果描述 1 未划线区域表面腐蚀为9.5级,划线区域腐蚀离划线处约0.5mm 2 腐蚀离划线处约0.5mm 3 腐蚀离划线处约0.5mm 4 腐蚀离划线处约0.5mm 5 腐蚀离划线处约0.5mm 6 腐蚀离划线处约0.5mm 7 腐蚀离划线处约0.5mm 8 腐蚀离划线处约0.5mm 9 腐蚀离划线处约0.5mm 10 无明显腐蚀 11 腐蚀离划线处约1mm 表2 粉末喷涂样品120hCASS试验结果 样品编号 试验结果描述 12 腐蚀离划线处约1mm 13 腐蚀离划线处约1mm 14 腐蚀离划线处约1mm 15 腐蚀离划线处约1mm 16 腐蚀离划线处约0.5mm 17 腐蚀离划线处约0.5mm 18 腐蚀离划线处约0.5mm 19 腐蚀离划线处约0.5mm 20 无明显腐蚀 21 无明显腐蚀 22 无明显腐蚀 23 无明显腐蚀 24 无明显腐蚀 25 无明显腐蚀 26 无明显腐蚀 27 无明显腐蚀 28 无明显腐蚀 29 无明显腐蚀 30 无明显腐蚀 31 无明显腐蚀 32 无明显腐蚀 33 无明显腐蚀 2.5 试验结果分析 (1)本次试验共测试了33个样品,所有样品划线区域的腐蚀都在离划线处2mm以内,其中有18个样品有明显的腐蚀现象,占所有样品的54.5%,有1个样品在非划线区域有轻微腐蚀,占所有样品的3.1%。 (2)本次试验共测试了11个氟碳漆喷涂样品,其中有1个氟碳漆喷涂样品经120hCASS试验后,其腐蚀离划线处大约为1mm,占所有氟碳漆喷涂样品的9.1%;有1个氟碳漆喷涂样品经120hCASS试验后无明显腐蚀,占所有氟碳漆喷涂样品的9.1%。 (3)本次试验共测试了22个粉末喷涂样品,其中有4个粉末喷涂样品经120hCASS试验后,其腐蚀离划线处大约为1mm,占所有粉末喷涂样品的18.2%;有14个粉末喷涂样品经120hCASS试验后无明显腐蚀,占所有粉末喷涂样品的63.6%。 3 结论 从以上试验结果我们可以看出,对于受检面划交叉线的铝合金粉末喷涂样品和氟碳漆喷涂样品,经过120h铜加速乙酸盐雾试验后,其腐蚀一般都在离交叉线 2mm以内,而在非划线区域也将可能出现腐蚀现象。因此,我们得出以下结论:(1)铜加速乙酸盐雾试验的加速腐蚀速度相对比较快,经过120h铜加速乙酸 盐雾试验后,对于工业化生产的喷涂样品在划交叉线区域很多都有较明显的腐蚀现象。(2)对于正常生产的粉末喷涂样品和氟碳漆喷涂样品,经过120h铜加速 乙酸盐雾试验后,其腐蚀一般都比较轻微,基本上都在离交叉线2mm以内,因此将GB 5237.4-2004和GB 5237.5-2004中的铜加速乙酸盐雾试验修改为将样品表面划交叉对角线之后再进行试验应该是可行的。 参考文献 [1] GB 5237.4-2004[S],铝合金建筑型材 第4部分 粉末喷涂型材 [2] GB 5237.5-2004[S],铝合金建筑型材 第5部分 氟碳漆喷涂型材 [3] GB/T 10125-1997[S],人造气氛腐蚀试验 盐雾试验
2013-04-072010年07月23日 09:54 广佛都市网-佛山日报 广佛都市网讯 佛山日报记者赵岚 通讯员曾锐波、刘汕鹏报道:上海世博展是今年夏天最热门的旅游地,而“南海制造”铝型材也功不可没。昨日,记者从南海铝型材协会获悉,包括世博会主办公楼、阿根廷馆等均大规模使用大沥企业产品。 南海多家铝型材企业中标世博会场馆项目。南海大沥作为我国重要的铝型材生产基地,拥有众多国内知名品牌,而企业开发的节能环保产品,也屡屡被应用到国内重大场馆工程。 记者了解到,在世博园区内内,包括世博会中国馆、世博会主办公楼、阿根廷馆、阿联酋馆等,均使用了来自南海大沥企业生产的环保、节能铝型材产品。 本地一家铝型材厂凭借突出的环保水平,成功“入园”。坚美铝业集团有限公司副总工程师何家金介绍,凭借自主开发的具有隔热、节能功能的铝型材产品,坚美成 功“杀入”上海世博会,包括上海世博会主办公楼,阿联酋馆和阿根廷馆等建筑,都能找到坚美铝材的“影子”,其用量总共超过了500吨。 据了解,近年来大沥铝型材企业在清洁生产、节能减排上不断投入资金,实现了与生态环境和谐发展的目标。而行业在环保节能产品的研发上也不断加大。其中,坚 美铝业承担的国家科技部重点项目——环境友好型建筑材料与产品研究开发目前已经结束,正在鉴定验收。而南海铝型材企业研发的多种节能环保铝型材,已被广泛 使用到世博会重要场馆上,并成为引领建筑节能环保发展的新方向。
2010-07-232010年06月03日 14:45 广佛都市网-珠江时报 狮山助镇内铝型材企业进行整治提升 本报讯(记者 吕啸天 通讯员 黄莹) 昨日上午,狮山镇节能减排治污办与南海区环保局联合举办培训班,帮助镇内52家铝型材及相关企业在技术上进行整治提升。 据介绍,狮山镇需要整治提升的52家铝型材企业要在6月30日前办理相关申请手续,所有的整治工程要求在9月15日前全部完成,区环保局等部门将在10月31日前完成验收监测,对验收不达标的企业责令一个月内完成整治,经整治后仍达不到要求的予以关停。 昨日,区环保局负责人为相关的铝型材企业主、环保技术骨干讲解了整治提升的相关标准、要求等。狮山镇共有铝型材企业58家,其中需整治提升的为52家,关停6家。区环境保护局副局长杜剑波表示,狮山是继大沥之后第二多铝型材的镇,大沥有184家,狮山58家排第二。 “狮山将坚持方向不变、目标不降、步子不停、力度不减地对重污染行业的整治提升。”狮山镇党委委员游剑锋表示,该镇已组建综合巡查执法大队,实行网格精细 化管理和综合执法治理,对环境污染严重、群众投诉较多的行业和区域实行铁腕整治。希望相关的铝型材企业主密切配合,做好整治工作,促进经济与社会可持续发 展,推动低碳经济和绿道城市建设,推动狮山打造“广佛都市圈西翼新型的绿色经济区”。
2010-06-03